Point process-based Monte Carlo estimation
نویسنده
چکیده
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form X = g(U) where g is a deterministic function and U can be a random finiteor infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm (TPA) or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator – in particular it has a finite variance as soon as there exists k ∈ R > 1 such that E [ Xk ] < ∞. Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its computational cost. Finally we extensively study the case where X is heavy-tailed.
منابع مشابه
Bayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملBayesian Estimation of Change Point in Phase One Risk Adjusted Control Charts
Use of risk adjusted control charts for monitoring patients’ surgical outcomes is now popular.These charts are developed based on considering the patient’s pre-operation risks. Change point detection is a crucial problem in statistical process control (SPC).It helpsthe managers toanalyzeroot causes of out-of-control conditions more effectively. Since the control chart signals do not necessarily...
متن کاملA New Methodology for Frequency Estimation of Second or Higher Level Domino Accidents in Chemical and Petrochemical Plants Using Monte Carlo Simulation
Some of the most destructive accidents of 1980s and 90s which occurred in process industries were domino accidents. Although domino accidents are among the most destructive industrial accidents, there are not much pioneering works done on quantification of them. The analytical formulation of the domino accidents is usually complex and need a deep knowledge of probability rules. Even if the ...
متن کاملBayesian Estimation of the Multiple Change Points in Gamma Process Using X-bar chart
The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma process. In addition, we consider the possibility o...
متن کاملCurve and Surface Estimation using Dynamic Step Functions
This chapter describes a nonparametric Bayesian approach to the estimation of curves and surfaces that act as parameters in statistical models. The approach is based on mixing variable dimensional piecewise constant approximations, whose ‘smoothness’ is regulated by a Markov random field prior. Random partitions of the domain are defined by Voronoi tessellations of random generating point patte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 27 شماره
صفحات -
تاریخ انتشار 2017